
Computer Art and the Theory of 
Computation

Originally published in hz-journal.org

Jim Andrews
vispo.com

https://www.hz-journal.org/n20/andrews.html


Computer Art and the Theory of Computation

Jim Andrews
vispo.com

The Blooming

hat I'd like to do is to explore the relevance of the theory of computation to 
computer art. Both of those terms, however, need a little unpacking/explanation 
before talking about their relations. W

Let's start with computer art. Dominic Lopes, in A Philosophy of Computer Art, makes a 
useful distinction between digital art and computer art. Digital art, according to Lopes, 
can refer to just about any art that is or was digitized. Such as scanned paintings, online 
fiction, digital art videos, or digital audio recordings. Digital art is not a single form of 
art, just as fiction and painting are different forms of art. To call something digital art is 
merely to say that the art's representation is or was, at some point, digital. It doesn't 
imply that computers are necessary or even desirable to view and appreciate the work.

Whereas the term computer art is much better to describe art in which the computer is 
crucial as medium. What does he mean by "medium"? He says "a technology is an artistic 
medium for a work just in case it's use in the display or making of the work is relevant to 
its appreciation" (p.15). We don't need to see most paintings, texts, videos or audio 
recordings on computers to display or appreciate them. The art's being digital is 
irrelevant to most digital art. Whereas, in computer art, the art's being digital is crucial to 
its production, display and appreciation.

Lopes also argues that whereas digital art is simply not a single form of art, computer art 
should be thought of as a new form of art. He thinks of a form of art as being a kind of art 
with shared properties such that those properties are important to the art's appreciation. 
He defines interactivity as being such that the user's actions change the display of the 
work itself. So far so good. But he identifies the crucial property that works of computer 
art share as being interactivity.

I think all but one of the above ideas by Lopes are quite useful. The problem is that there 
are non-interactive works of computer art. For instance, generative computer art is often 
not interactive. It often is different each time you view it, because it's generated at the 
time of viewing, but sometimes it requires no interaction at all. Such work should be 
classified as computer art. The computer is crucial to its production, display, and 
appreciation.

Computer Art and the Theory of Computation 1

https://www.vispo.com/writings/essays/APhilosophyOfComputerArt-Reviewed-JimAndrews.pdf


Lopes's book is quite useful in a number of ways. It's the first book by a professional 
philosopher toward a philosophy of computer art. It shows us how a philosophy of 
computer art might look and proceed. But it is a philosophy, in the end, of interactive 
computer art. Which is a more limited thing than a philosophy that can also 
accommodate non-interactive computer art.

Now, why did a professional philosopher writing a philosophy of computer art fail to 
account for non-interactive computer art in his philosophy? Well, to write a more 
comprehensive philosophy requires an appreciation of the importance of 
programmability. For it is programmability, not interactivity, that distinguishes computer 
art from other arts. And it is at this point that we begin to glimpse that some 
understanding of the theory of computation might be relevant to an understanding and 
appreciation of computer art.

I'll return to this point in another section. I've given you some idea of what I mean by 
computer art. Now let's have a look at the theory of computation.

It was inaugurated in the work of the mathematician and 
logician Alan Turing in 1936 with his world-shaking paper 
entitled "On Computable Numbers, with an Application to 
the Entscheidungsproblem". This is one of the great 
intellectual documents of the twentieth century. In this 
paper, Turing invented the modern computer. He 
introduced us to what we now call the Turing machine, 
which is an abstract idea, a mathematization, an 
imaginary object that has all the theoretical capabilities of 
modern computers. As we know, lots of things have 
changed since then in how we think about computers. 
However, the Turing machine has not changed 
significantly and it is still the bedrock of how we think 
about computers. It is still crucial to our ability to think 
about the limits of the capabilities of computers.

And that is precisely what the theory of computation 
addresses: the limits of the capabilities of computers. Not so much today's limits, but 
theoretical limits. The theory of computation shows us what is theoretically possible with 
computers and what is theoretically impossible. "Theoretically impossible" does not mean 
"probably won't happen". It means "will absolutely never ever (not ever) happen as long 
as the premises of the theory are true".

Since we are dealing with matters of art, let's first get a sense of the poetry of the theory of 
computation. It's a little-appreciated fact that Turing devised the Turing machine in order 
to show that there are some things it will never be capable of doing. That is, he devised 
the modern computer not to usher in the age of computers and the immense capabilities 
of computers, but to show that there are some things that no computer will ever do. 
That's beautiful. The theory of computation arises not so much from attempts to create 
behemoths of computation as to understand the theoretical limits of the capabilities of 
computing devices.

If you wish to prove that there are some things that no computer will ever do, or you 
suspect that such things do exist, as did Turing—and he had good reason for this 
suspicion because of the earlier work of Kurt Gödel—then how would you go about 
proving it? One way would be to come up with a computer that can do anything any 
conceivable computer can do, and then show that there are things it can't possibly do. 
That's precisely how Turing did it.

Why was he more interested in showing that there are some things no computer will ever 

Computer Art and the Theory of Computation 2

Illustration 1: Alan Turing inaugurated the 
theory of computation in 1936 with the most 
humble but powerful manifesto of all time.

https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://plato.stanford.edu/entries/turing-machine/
http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
https://en.wikipedia.org/wiki/Alan_Turing


do than in inventing the theoretical modern computer? Well, in his paper, he solves one 
of the most famous mathematical problems of his day. That was closer to the intellectual 
focus of his activities as a mathematician and logician, which is what he was. The famous 
problem he solved was called the Entscheidungsproblem, or the decision problem. 
Essentially, the problem, posed by David Hilbert in 1928, was to demonstrate the 
existence or non-existence of an algorithm that would decide the truth or falsity of any 
mathematical/logical proposition. More specifically, the problem was to demonstrate the 
existence or non-existence of an algorithm which, given any formal system and any 
proposition in that formal system, determines if the proposition is true or false. Turing 
showed that no such algorithm can exist.

At the time, one of the pressing problems of the day was basically whether mathematics 
was over and done with. If it was theoretically possible to build a computer that could 
decide the truth or falsity of any mathematical/logical proposition, then mathematics was 
finished as a serious intellectual enterprise. Just build the machines and let them do the 
work. The only possibly serious intellectual work left in mathematics would be meta-
mathematical.

However, Turing showed that such an algorithm simply cannot exist. This result was 
congruent with Kurt Godel's earlier 1930 work which demonstrated the existence in any 
sufficiently powerful formal system of true but unprovable propositions, so-called 
undecidable propositions. In other words, Godel showed that there are always going to be 
propositions that are true but unprovable. Consequently, after Godel's work, it seemed 
likely that no algorithm could possibly exist which could decide whether any/every well-
formed proposition was true or false.

We glimpse the poetics of the theory of computation in noting that its historical 
antecedant was this work by Gödel on unprovable truths and the necessary 
incompleteness of knowledge. The theory of computation needed the work of Gödel to 
exist before it could bloom into the world. And let us be clear about the nature of the 
unprovable truths adduced by Godel. They are not garden-variety axioms. Garden-variety 
axioms, such as the parallel postulate in geometry, are independent. That is, we are free 
to assume the proposition itself or some form of the negation of the proposition. The so 
called undecidable propositions adduced by Gödel are true propositions. We are not at 
liberty to assume their negation as we are in the case of independent axioms. They are 
(necessarily) true but unprovably true. And if we then throw in such a proposition as an 
axiom, there will necessarily always be more of them. Not only do they preclude the 
possibility of being able to prove every true proposition, since they are unprovable, but 
more of them cannot be avoided, regardless of how many of them we throw into the 
system as axioms.

Sufficiently rich and interesting formal systems are necessarily, then, incomplete, in the 
sense that they are by their nature incapable of ever being able to determine the truth or 
falsity of all propositions that they can express.

So the theory of computation begins just after humanity becomes capable of 
accomodating a deep notion of unprovable truth. Of course, unprovable truth is by no 
means a new concept! We have sensed for millenia that there are unprovable truths. But 
we have only recently been able to accommodate them in sensible epistemologies and 
mathematical analysis. Unprovable truths are fundamental to poetry and art, also. We 
know all too well that reason has its limits.

The more we know about ourselves, the more we come to acknowledge and understand 
our own limitations. It's really only when we can acknowledge and understand our own 
limitations that we can begin to do something about them. The first design for a so-called 
Turing-complete computer—that is, a computer that has all the theoretical capabilities of 
a Turing machine—pre-dated Turing by a hundred years: Charles Babbage's Analytical 

Computer Art and the Theory of Computation 3

https://en.wikipedia.org/wiki/David_hilbert
https://en.wikipedia.org/wiki/Entscheidungsproblem


Engine. But Babbage was never able to create his computer. It was not only a matter of 
not being able to manufacture the parts in the way he wanted, but he lacked the theory of 
computation that Turing created. A great theory goes a long way. The Turing machine is 
simplicity itself. Children can understand it. We think of computers as intimidatingly 
complex machines, but their operation becomes much more understandable as Turing 
machines.

We could have had computers without the theory of computation, but we wouldn't have 
understood them as deeply as we do, wouldn't have any sense of their theoretical 
limitations—concerning both what they can and can't do. And we wouldn't have been able 
to develop the technology as we have, because we simply wouldn't have understood 
computers as deeply as we do now, wouldn't have been able to think about them as 
productively as we can with the aide of a comprehensive theory. Try to put a man on the 
moon without Newtonian mechanics. It might be doable, but who would want to be on 
that ship? Try to develop the age of computers without an elegant theory to understand 
them with? That sounds more like the age of the perpetual blue screen.

Gödel's incompleteness theorems are not logically prior to Turing's work. In other words, 
Turing's work does not logically depend on Gödel's work—in fact, incompleteness can be 
deduced from Turing's work, as computer scientists sometimes point out. But it was 
Gödel's work that inspired Turing's work. Not only as already noted, but even in its use of 
Georg Cantor's diagonal argument. Gödel's work was the historical antecedent of Turing's 
work. Gödel's work established a world view that had the requisite epistemological 
complexity for Turing to launch a theory of computation whose epistemological 
capabilities may well encompass thought itself.

The theory of computation does not begin as a manifesto declaring the great capabilities 
of computers, unlike the beginnings of various art movements. Instead, it begins by 
establishing that computers cannot and simply will never ever solve certain problems. 
That is the main news of the manifesto; it means that mathematics is not over, which had 
been a legitimate issue for several years. Were computers going to take over mathematics, 
basically? Well, no. That was very interesting news. You don't often get such news in the 
form of mathematical proofs. News that stays news. The other news in the manifesto is 
almost incidental: oh, by the way, here is a mathematization of all conceivable machines—
here is the universal machine, the machine that can compute anything that any 
conceivable machine can compute.

His famous paper is the foundation for the theory of computation. He put the idea of the 
computer and the algorithm in profound relation with Gödel's epistemologically 
significant work. He wrote the philosophical foundation for the theory of computation, 
establishing that it does indeed have important limitations, and he also provided us with 
an extraordinarily robust mathematization of the computer in the form of the Turing 
Machine.

Turing's paper is significant in the history of mathematics. We see now that the 
development of the computer and the theory of computation occurs after several hundred 
years of work on the "crisis of foundations" in mathematics and represents a significant 
harvest or bounty from that research. At least since the seventeenth century, when bishop 
Berkeley famously likened Newton's treatment of some types of numbers in calculus to 
"the ghosts of departed quantities", and especially since the birth pains in the eighteenth 
century of non-Euclidean geometry, mathematicians had understood that the 
foundations of mathematics were vaguely informal, possibly contradictory, and needed to 
be formalized in order to provide philosophical and logical justification and logical 
guidelines in the development of mathematics from first principles.

There's a straight line from that work to the work of Frege, Cantor, and Gödel. And thence 
to Turing. The theory of computation, it turns out, needed all that work to have been done 

Computer Art and the Theory of Computation 4

https://youtu.be/7TycxwFmdB0?si=wsBOvE_6J4QanL-m
https://youtu.be/7TycxwFmdB0?si=wsBOvE_6J4QanL-m
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Diagonal_argument


before it could bloom. It needed the philosophical perspective and the tools of symbolic 
logic afforded by that work. Because the theory of computation is not simply a theory of 
widgets and do-dad machines. At least since the time of Leibniz in the seventeenth 
century, the quest to develop computing devices has been understood as a quest to 
develop aides to reason and, more generally, the processes of thought.

The Turing Machine and the theory of computation provide us with machines that 
operate, very likely, at the atomic level of thought and mind. Their development comes 
after centurys of work on the philosophical foundations of mathematics and logic. Not to 
say that it's flawless. After all, it's necessarily incomplete and perhaps only relatively 
consistent, rather than absolutely consistent. But it's good enough to give us the theory of 
computation and a new age of computers that begins with a fascinatingly humble but far-
reaching paper entitled "On Computable Numbers, with an Application to the 
Entscheidungsproblem" by Alan Turing.

It changes our ideas about who and what we are. Computer art, without it, would be 
utterly different. Just as would the world in so many ways.

As a computer artist, I see this history as part of the intellectual heritage of computer art. 
It’s not simply a history of the development of a machine. It’s a rich philosophical history 
that is fundamentally concerned with who and what we are.

Greenberg, Modernism, Computation and 
Computer Art 

In a short but influential piece of writing by Clement Greenberg called Modernist 
Painting written in 1960—and revised periodically until 1982—the art critic remarked 
that 

"The essence of Modernism lies, as I see it, in the use of characteristic 
methods of a discipline to criticize the discipline itself, not in order to 
subvert it but in order to entrench it more firmly in its area of 
competence." 

Such sweeping generalizations are always problematical, of course. But I want to use the 
Greenberg quote to tell you an equally problematical story about the birth of the theory of 
computation and, thereby, computer art. Humor me. It's Clement Greenberg. Come on.

The work I've mentioned by Gödel and Turing happened in the thirties, toward the end of 
modernism, which was roughly from 1900 till 1945, the end of World War II. So it's work 
of late modernism. Though, of course, Greenberg’s version of modernism has a different 
timeline. 

Let's grant Greenberg clemency concerning his conceit, for the moment, that the 
"essence"—itself a word left over from previous eras—of modernism, of the art and 
culture of that era, at least in the west, involved a drive to a kind of productive self-
referentiality or consciousness of the art itself within the art itself. What work could 
possibly be more exemplary of that inclination than the work by Gödel and Turing that 
I've mentioned?

Turing's paper in which he invents the modern computer and solves the 
Entscheidungsproblem is profoundly meta-mathematical; the Entscheidungsproblem, as 
already noted, is a problem of meta-mathematics. And its argument also involves 

Computer Art and the Theory of Computation 5

http://web.archive.org/web/20060105194921/http://www.sharecom.ca/greenberg/modernism.html
http://web.archive.org/web/20060105194921/http://www.sharecom.ca/greenberg/modernism.html
https://en.wikipedia.org/wiki/Metamathematics


interesting self-referenciality, as is pointed out in plato.stanford.edu/entries/turing:

Turing's proof can be recast in many ways, but the core idea depends on 
the self-reference involved in a machine operating on symbols, which is 
itself described by symbols and so can operate on its own description.

Self-reference is crucial also to Godel's proof in which, among other things, the 
proposition "This proposition is not provable" is shown to be necessarily true but, yes, 
unprovable, and exemplary of a kind of proposition which Godel calls "undecidable". Self-
reference is an implicit mode of meta-mathematics because mathematics/logic is used to 
inquire into the nature or properties of mathematics/logic, though that doesn't need to be 
any more deeply self-referential than using language to inquire into the properties of 
language; what else are you gonna use? Your big toe? I don't think so.

So we can see the work of Godel and Turing as a kind of profound culmination of 
modernism's "use of characteristic methods of a discipline to criticize the discipline 
itself". Greenberg sees modernism as involving a meta mode of art and thought, this 
growing self-critical, self-aware tendency in art. Modernism culminates in the work of 
Godel and Turing and the consequent development of the computer, a machine that 
operates, as it were, at the atomic level of thought. The culmination of that self-critical, 
self-aware meta mode of modernism in which the work of art is aware of itself, in a sense, 
is the creation of a type of machine that may indeed quite literally possess the capability 
of becoming self-aware.

The computer age and, of course, computer art commences at the end of the modern era, 
signaled by the end of a world war, the invention of the theory of computation, and the 
atomic bomb, an understanding of the fierce chemistry of the atom, the utterly micro, at 
the level of the chemistry of the sun, of Apollo, of Ra, the yay very large. Looking inward 
and looking outward.

That knowledge of the sun's chemistry and its harnessing in the creation of the atomic 
bomb does indeed reveal important things about our own nature, but the whole subject is 
not centrally about humans and human capacities. Whereas the theory of computation is 
a theory inaugurated by Turing as very explicitly being about human capacities. Recall 
that the Entscheidungsproblem, or the decision problem, was to demonstrate the 
existence or non-existence of an algorithm that would decide the truth or falsity of any 
mathematical/logical proposition. A large part of the difficulty of this problem was in 
coming to the best possible formulation of what we mean by "algorithm". As we read at 
plato.stanford.edu/entries/turing:

Turing's purpose was to embody the most general mechanical process as 
carried out by a human being. His analysis began not with any existing 
computing machines, but with the picture of a child's exercise book 
marked off in squares. From the beginning, the Turing machine concept 
aimed to capture what the human mind can do when carrying out a 
procedure.

From the start, the whole project of computing has been about us. And involves 
abstracting the process of thought into its constituent atoms, as it were. Computer art, a 
new form of art, goes beyond Greenberg's meta imperative into an art that could possibly 
create works in which the objects do actually think. And do actually create art. The 
human as the meta artist; the program as the artist. A situation where, no, art is not over 
and the only serious artistic work left is meta art, but the liveliness and self-consciousness 
of the object envisioned in Greenberg's vision of modernism is taken to the next level in 
the age of computers.

Computer Art and the Theory of Computation 6

http://www.plato.stanford.edu/entries/turing
https://en.wikipedia.org/wiki/G%C3%B6del's_incompleteness_theorems
http://www.plato.stanford.edu/entries/turing


Programmability 

I said earlier that it's programmability, not interactivity (or anything else) that is the 
crucial matter to consider in computer art. I want to explain and explore that claim in this 
section.

What makes computer art computer art? We've seen that there is a great deal of art that 
appears on computers that could as well appear on a page or on a TV, in a canvas or on an 
album. I'm calling that art digital art and computers are not crucial to the display or 
appreciation of it.

The idea I want to capture in the notion of 'computer art' is art in which computers are 
crucial for the production, display and appreciation of the art, art which takes advantage 
of the special properties of computers, art which cannot be translated into other media 
without fundamentally altering the work into something quite different than what it was 
on the computer, art in which the computer is crucial as medium.

And we've noted that interactivity is not sufficient to characterize the special properties of 
computer art, where interactivity means that the display itself is actually 
changed/affected by the actions of the user/viewer. We can imagine theatre, for instance, 
that is responsive to input from the audience. Interactivity is not unique to computers. 
But there's no question it's a very important part of many works of computer art. Also, 
although interactivity is not unique to computers, interactivity is the basis of a whole type 
of computer art from games to instrument-like devices to communication devices. 
Whereas interactivity does not have such a crucial and definitive role in other forms of 
(non-computer) art. The computer's ability to respond almost instantaneously to 
increasingly complex situations with sometimes deeply considered, highly conditional 
responses is, well, unique. Interactivity itself is not, per se, unique to computing, but 
some of the ways computers can react interactively are unique. Computers can guide us 
instantaneously through a whole interactive virtual world of illusions at every point and 
maintain the illusion of that world's existence by constructing it, moment to moment, 
based on our navigational decisions. So there is no question that interactivity is often the 
crucial property of computer art. In that it's the interactivity we often think about most 
deeply in our appreciation of the work. Interactivity can be experiential, immediate, 
engrossing and, yes, immersive in ways that art rarely is.

However, as I pointed out, there are types of computer art that art not interactive at all. 
Generative computer art is often not interactive. It's often different each time you see it. 
The art is generated by a computer program. This sort of work needs to be considered as 
computer art because the art requires a computer to be generated at all.

So if interactivity is not sufficient to characterize the special properties of computer art, 
what is?

Well, in both interactive computer art and generative art, the computer's 
programmability is crucial. Interactivity requires programmability. Interactivity requires 
conditional responses. That's fundamental to programming. And, in generative art, the 
art is different each time because of conditional programming.

Programmability is what separates computers from other types of machines. It's 
important to understand this to have any idea about what a computer really is. Non-
programmable machines may have some very slight ability to react conditionally. The 
light in a refrigerator comes on only when the door is opened and goes off only when the 
door is closed. That's conditional behavior. When you put a penny in a pop machine you 

Computer Art and the Theory of Computation 7



get no pop but you do if you put in enough money. That's also conditional behavior.

But computers can be as labyrinthine as we ourselves are, sometimes, in our conditional 
responses to life. Computers can make decisions. What sort of decisions? Think of the 
sort of decision computers can make as being like atoms. They're small and you don't 
notice them. But put lots of them together and you get the sort of decisions humans make, 
just like when you put lots of atoms together you get stuff we can see. Basically, 
computers can only decide if two numbers are equal or one number is bigger than 
another number. And then do different things depending on the outcome. But just like 
everything is made out of atoms, all decisions can be made of lots of smaller decisions.

It's programmability that allows computers to exhibit conditional behavior that ranges 
from the obviously just plain-old mechanical, like a fridge or a toaster's behavior is 
mechanical, to decisions and behavior predicated on millions of lines of programming 
that not even the programmers can anticipate. Deep Blue, the famous chess program, 
plays a better game of chess than any of its programmers.

Historically, the drive to create programmable machines arose from the need to make 
machines flexible. When you go to the time, trouble, and expense of building a machine to 
perform a task, you would like it to be capable of related tasks. If the machine is a loom, 
for instance, to weave fabric, you would like the loom to be capable of weaving many 
different types of cloth that display many different types of patterns. Rather than having 
to have a different machine for each of them. How do you achieve the utmost in such 
flexibility? Well, you make the action of the machine, at any stage in its operation, 
dependent on decisions carried out by a program that guides the machine's actions 
toward the completion of the particular desired task. And this program is what you 
change when you want the machine to do something different. You don't change the 
machine; you change the program.

In another section, we'll look more closely at just what a program is, and what a computer 
is, exactly. We'll discuss the idea of the Turing machine, the universal computer, and 
precisely how it works. It's quite simple, actually. Children can understand it. The Turing 
machine is an imaginary, theoretical computer. It is our model of every computer that has 
ever existed and may ever exist. In any case, the Turing machine is the ultimate jackpot of 
machine flexibility. In the 75 years that have elapsed since it was first invented by Turing, 
nobody has been able to come up with a similarly imaginary, theoretical computing 
device that can do more than the Turing machine.

The Turing machine is profoundly flexible, as a machine. It is flexible to the point that 
there is no proof, and probably never will be, that there exist thought processes of which 
humans are capable and computers are not. Which is to say that it's very likely that 
computers are flexible to the point of being capable of thought itself.

And this flexibility is completely predicated on programmability. Programmability, not 
interactivity or anything else, is what distinguishes computers from other machines. 
Programmability is the fundamental distinguishing characteristic of computers.

Well so what? Of what importance is this to computer art?

Recall that I'm defining computer art to be art in which the computer is crucial as 
medium. That is, the computer is crucial to the display and appreciation of the work. The 
art can't be displayed (even if it is sonic) on a device that isn't hooked to a computer; it 
can't run properly or be properly appreciated without it.

If you think about what that means, I think you have to come to the conclusion that such 
art requires a computer for its display and appreciation because the art relies on 
something about computers that the art can't get from any other devices. What could that 
be? It could be interactivity. But recall that there is lots of computer art that isn't 

Computer Art and the Theory of Computation 8



interactive in the slightest. In that case, it has to be programmability. And even when it is 
interactivity, as we've seen, computerized interactivity is completely predicated on 
programmability.

So the relation of computer art and programmability is very strong. Computer art is 
simply not computer art without programmability. The programmability of computers is 
one of the main things–or, in some cases, the main thing–that computer artists use to 
distinguish their art from every other type of art.

Evolution and the Universal Machine 

Having recently been trying to be less of a fossil concerning knowledge of evolution, I've 
watched all sorts of truly excellent documentaries available online. In several of them, it 
was said that Darwin's idea of evolution through natural selection is the best idea 
anyone's ever had. Because it's been so powerfully explanatory and has all the marks of 
great ideas in its simplicity and audacious, unexpected and absolutely revolutionary 
character.

It's definitely a good one. That's for sure. But I'll tell you an idea that I think is right up 
there but is nowhere near as widely understood, perhaps permanently so. It's Turing's 
idea of the universal machine. Turing invented the modern computer. This was not at all 
an engineering feat. It was a mathematical and conceptual feat, because Turing's machine 
is abstract, it's a mathematization of a computer, it's a theoretical construction.

What puts it in the Darwin range of supreme brilliance are several factors. First and 
foremost, it shows us what is almost certainly a sufficient (though not a necessary) model 
of mind. There is no proof, and probably never will be, that there exist thought processes 
of which humans are capable and computers are not. This is a source of consternation for 
many people–very like Darwin's ideas were and, in some quarters, still are.

The reason why such proof will likely never be forthcoming is because it would involve 
demonstrating that the brain or the mind is capable of things that a Turing machine is 
not–and a Turing machine is a universal machine in the sense that a Turing machine can 
almost certainly execute any finitistic algorithm. A finitistic algorithm can be completed 
in finitely many steps where each step takes a finite time to finish.

Turing has given us a theoretical model not only of all possible computing machines, 
which launched the age of computing, but a device capable of thought at, as it were, the 
atomic level of thought. I don't really see that there is any reasonable alternative to the 
idea that our brains must function as information processing machines. The universality 
of Turing's machine is what allows it to encompass even our own brains.

Additionally, another reason to rank Turing's idea very high is that, mathematically, it is 
extrordinarily beautiful, drawing, as it does, on Godel's marvelous ideas and also those of 
Georg Cantor. Turing's ideas are apparently the culmination of some of the most beautiful 
mathematics ever devised.

Darwin's ideas place us in the context of "deep history", that is, within the long history of 
the planet. And they put us in familial relation with every living thing on the planet in a 
shared tree of life. And they show how the diversity of life on our planet can theoretically 
emerge via evolution and natural selection.

Computer Art and the Theory of Computation 9



Darwin's ideas outline a process that operates in history to generate the tree of life. 
Turing's ideas outline a process that can generate all the levels of cognition in all the 
critters thought of and unthought. Darwin gives us the contemporary tree of life; Turing 
gives us the contemporary tree of knowledge.

Computer Art and the Theory of Computation 10


	Computer Art and the Theory of Computation
	Computer Art and the Theory of Computation

